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Abstract: In this study, a novel multi-layer fused convolution neural network (MLF-CNN) is proposed for detecting pedestrians
under adverse illumination conditions. Currently, most existing pedestrian detectors are very likely to be stuck under adverse
illumination circumstances such as shadows, overexposure, or nighttime. To detect pedestrians under such conditions, the
authors apply deep learning for effective fusion of the visible and thermal information in multispectral images. The MLF-CNN
consists of a proposal generation stage and a detection stage. In the first stage, they design an MLF region proposal network
and propose to use summation fusion method for integration of the two convolutional layers. This combination can detect
pedestrians in different scales, even in adverse illumination. Furthermore, instead of extracting features from a single layer, they
extract features from three feature maps and match the scale using the fused ROI pooling layers. This new multiple-layer fusion
technique can significantly reduce the detection miss rate. Extensive evaluations of several challenging datasets well
demonstrate that their approach achieves state-of-the-art performance. For example, their method performs 28.62% better than
the baseline method and 11.35% better than the well-known faster R-CNN halfway fusion method in detection accuracy on
KAIST multispectral pedestrian dataset.

1 Introduction
Pedestrian detection as a canonical sub-problem of object detection
has received great attention during recent years, since it is an
essential technique for various applications such as video
surveillance [1], person identification [2], people tracking [3], and
advanced driver assistance systems (ADASs). Despite extensive
efforts for solving pedestrian detection problems, it is still regarded
as a challenging problem. This is due to tiny and occluded
appearances, cluttered backgrounds, and adverse illumination
conditions. However, most past research have been limited to good
lighting conditions. As a result, detecting pedestrians in the case of
illumination variation, shadows, and low external light at nighttime
is still a challenging problem.

To overcome these problems, it is helpful to fuse the
information of a visible camera with the information provided by a
thermal camera. A thermal camera is useful under adverse
illumination conditions and is less reliant on the surrounding
lighting changes. However, it loses fine visual details of human
objects (e.g. clothing) that can be captured by visible cameras
depending on external illumination. By implementing sensor
fusion, these varying, but complementary characteristics can be
integrated efficiently for robust environment perception. As shown
in Fig. 1a, the visibility of pedestrians in visible images is limited
due to poor illumination conditions. However, in thermal images,
the intensity and shape information of pedestrians can be provided.
As can be seen in Fig. 1b, it is difficult to distinguish colour and
detailed information on pedestrians’ clothes, which can be
provided by visible images. In a bright background, the visible
image provides more distinctive visual features for the pedestrians
against background objects. In such a scenario, human silhouettes
in a thermal image are ambiguous, as shown in Fig. 1c. 

Recently, multispectral detectors (i.e. detectors that utilise the
information of visible and thermal cameras) are becoming
increasingly attractive for many applications such as military,
ADAS, surveillance etc. Furthermore, great progress has been
made by deep convolutional neural networks (CNNs) on pedestrian
detection [4–10]. These advantages make it very natural and
interesting to exploit the effectiveness of CNNs for multispectral
pedestrian detection. Therefore, several deep NN models have been

proposed to integrate information from multimodal data sources
[11–13] such as image versus audio, image versus text, and image
versus video. However, there have only been a few studies on how
to apply CNNs to vision problems with multispectral data sources,
except for very recent efforts [14–17]. Therefore, how visible and
thermal image channels can be properly fused in CNNs to achieve
the best performance in pedestrian detection remains to be solved.

In this paper, we focus on developing a CNN fusion
architecture that is able to take full advantage of synergy with
visible and thermal images for multispectral pedestrian detection. It
is likely that these two streams of CNN-based detectors, if fused
appropriately, could provide complementary detection information
and hence there is a big potential to improve the detection
performance by leveraging multispectral images. However, it is not
easy to explore the most effective CNN architecture that
simultaneously capitalise the information in both of visible and
thermal images for pedestrian detection. This is because CNN
consists of several layers, and features at different layers
correspond to various levels of semantic meanings and fine visual
details. Fusion at different layers with different fusion algorithms
would lead to different detection results. Therefore, it is very
important to find where to fuse and how to fuse the two networks
to make the best use of the multispectral images. From our
systematic experimental analysis, we propose a novel architecture
for fusion of two streams of networks that achieve state-of-the-art
performance. Our proposed architecture consists of a proposal
network and a detection network. The main contributions of this
work can be summarised as follows.

First, we developed a new fusion technique devising a new
multiple-layer fusion architecture. Our architecture adopted a
region proposal network (RPN), which is a type of CNN. This
multi-layer fusion method outperforms the baseline method on
multispectral pedestrian dataset [18]. This implies that the diverse
characteristics of different layers, low-level features, visual details,
and semantic features can provide richer feature abstractions,
which is the best fusion strategy.

Second, we found that our proposed multi-layer fused (MLF)
RPN with summation fusion provides the best performance on
multispectral pedestrian detection. Previous methods used
concatenation instead of summation.
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Third, based on MLF-RPN, we further improve the detection
stage to generate our final MLF-CNN. We take features not from
one separate layer such as previous works, but from multiple
feature maps. Then, the region of interest (ROI) pooling layers of
each feature map are combined for the later classification.
Experimental results show that the extra ROI pooling fusion
process can further improve the accuracy.

Finally, our proposed MLF-CNN achieves state-of-the-art
performance on several challenging datasets. Our method achieves
11.35, 12.17, and 20.01% lesser miss rates on the KAIST, UTokyo
multispectral datasets, and OSU colour–thermal dataset [18–20],
respectively, compared with the well-known faster regions with
CNN features (R-CNN) halfway fusion method [14].

The rest of this paper is organised as follows. In Section 2,
related works are briefly reviewed. In Section 3, our proposed
MLF-CNN is described in detail. In Section 4, experimental results
and analysis are presented. Finally, conclusions and future works
are summarised in Section 5.

2 Related works
We first give a review of pedestrian detection under good
illumination conditions, and then discuss the related works of
multispectral pedestrian detection under adverse illumination
conditions.

Methods of pedestrian detection can be divided into two main
categories: handcrafted channel-based methods and CNN-based
methods. Handcrafted channel-based methods require manually
designed features to express images. On the other hand, CNN-
based methods can automatically extract features and do not need
manual feature extraction and selection. In [21], the histogram of
oriented gradients (HOG) feature was presented; it showed good
results for pedestrian detection with a linear support vector
machine. On the basis of HOG features, Felzenszwalb et al. [22]
developed the mixtures of multi-scale deformable part model,
which can handle pose variations of pedestrians very well. In [23],
the HOG feature was further extended by adding the LUV colour
feature to generate the integral channel feature (ICF). The ICF
combined with boosted decision forests was very useful for
pedestrian detection, outperforming previous detectors by a large
margin. Then based on the ICF feature, aggregated channel
features (ACFs) are proposed [24], in which new gradient
magnitude channel feature is added with ACF, computational costs
can be reduced by downsampling the image channels by a factor of
four. To achieve better performance, a lot of studies based on HOG 
+ LUV were proposed. SquaresChntrs [25] combined square
regions from every channel for classifier training. In [26], a
statistical model was employed to distinguish pedestrian body
shapes. Locally decorrelated channel features (LDCF) [27]
demonstrated an efficient feature transform that removed
correlations in local neighbourhoods. Checkerboards [28]
combined several filters including uniform squares, horizontal and
vertical gradient detectors, and ‘checkerboard like’ patterns.

Recently, a large number of studies based on CNNs have
pushed pedestrian detection results to a higher level. Contrary to
the handcrafted channel-based methods, the CNN-based methods
have good self-learning ability to automatically extract
discriminative features. In [7], an integrated method called
convolutional channel features was proposed. It trained low-level
CNN features by boosting forest classifiers. To overcome the
heavily occluded problem, a robust architecture deep parts [10]
was proposed, which employed multiple parts for training
detectors. Tian et al. [8] introduced a novel task-assistant CNN that
used semantic information of persons and scenes for learning
discriminative representations for pedestrian detection. Cai et al.
[9] designed a complexity-aware cascade training algorithm,
combining various features from both the handcrafted and the
CNNs. Zhang et al. [6] developed RPN to generate candidates. The
top performing approaches on the Caltech pedestrian benchmark
are variations of fast or faster R-CNN. In [5], a multi-scale network
was proposed that can detect objects in various scales well. Du et
al. [4] proposed an fused deep neural network (F-DNN) + semantic
segmentation (SS) framework that adds segmentation as a strong
information for pedestrian detection.

Despite CNN-based methods making notable progress on
pedestrian detection when illumination is good, the challenge of
how to integrate information from multispectral data sources has
been rarely investigated. In [18], a multispectral ACF detector was
introduced. On the basis of ACF, it added thermal intensity channel
feature T and HOG feature of the thermal image THOG, then
adopted ACF + T + THOG as a desirable integration for the
channel feature and adopted AdaBoost classifier for pedestrian
detection. Choi et al. [16] introduced a CNN-based joint
framework that trained end-to-end CNNs for pedestrian proposal
generation in visible and thermal images individually. The final
classification was performed by support vector regression on
accumulated proposals. An R-CNN-based framework was
presented in [17], which processed the visible and thermal data
separately in R-CNN subnetworks and concatenated the two
resulting features. In [14], where to fuse visible and thermal images
between two streams of faster R-CNN architecture was discussed.
All fusion models were based on faster R-CNN architecture, and
the halfway fusion strategy which inserted fusion layer after the
fourth convolutional layer showed the best performance. Fusion
RPN + boosted decision tree (BDT) [15] proposed two-stream RPN
architecture for proposal generation and used BDT for
classification. Similar to [14], only one concatenation layer was
used, leaving a lot of room for improvement. Finally, Xu et al. [29]
proposed a cross-modality learning CNN that use multispectral
images for training and the only visible image is used for testing,
for which detection accuracy is not ideal. Although aforementioned
efforts have been made for developing multispectral fusion
algorithm for pedestrian detection, the challenge of how to fuse
visible and thermal data inside CNNs for optimal performance has
not been solved.

In this research, a new multi-layer fusion RPN is developed to
make the most of multispectral images. It can produce accurate
pedestrian candidates at various scales because multi-layer contains
multiple scale features. As a result, our new MLF-CNN achieves
desirable detection accuracy when compared with well-known
previous methods.

3 Proposed MLF-CNN
Our architecture consists of two stages: an MLF multi-scale RPN
to generate candidate proposals and a detection network that
classifies these proposals using convolutional features from
multiple feature maps. An overview of our MLF-CNN framework
is shown in Fig. 2. The network first processes visible and thermal
images with several convolutional and pooling layers to produce
convolutional feature maps as well as pedestrian candidate
proposals. Then, for each pedestrian proposal, ROI pooling layers
extract a feature vector in fixed length from the deconvolutional
feature maps. Each feature vector is sent into a fully connected
layer that finally divides into two output layers: one that generates
softmax probability to estimate two classes (pedestrian versus non-

Fig. 1  Examples of thermal images (top) and visible images (bottom) for
visualising complementary characteristics of multispectral data
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pedestrian) and another layer that outputs four parameterised
numbers to locate each pedestrian. 

3.1 Multi-layer fused RPN

Depending on the distance between a target and the camera, the
pedestrians have a wide variety of sizes. Most recent multispectral
pedestrian detection efforts [14, 15] are based on RPN in faster R-
CNN [30] to fuse the visible and thermal information and to
generate candidate bounding boxes (The input of RPN is an image
of any size, the output are a set of rectangular object proposals,
each with a confidence score.). The RPN generates candidate
bounding boxes from a single convolutional layer (Conv5), which
is not good at handling pedestrians of various scales and is likely to
miss small-sized pedestrians. To overcome the pedestrian scale
diversity problem, we use a multi-scale RPN to fuse the visible and
thermal information and to generate pedestrian candidates. The
multi-scale RPN generates candidate bounding boxes from four
layers at different scales. As shown in Fig. 2, we use the same
multi-scale RPN to process both the visible image and the thermal
image. Then, we have two multi-scale RPN networks, namely
RPN-V and RPN-T. For each RPN, the Conv4 layer in the lower
level is better for detecting small pedestrians, since it has smaller
receptive fields for matching objects. In contrast, the higher-level
Conv5 layer is more suitable for detecting pedestrians of large
scale. According to this characteristic, we generate detection output
layers from the Conv4 layer, Conv5 layer, Conv6 layer, and
Pooling6 layer for both of RPN-V and RPN-T, which are denoted
as Det1-V–Det4-V and Det1-T–Det4-T, respectively. For each
RPN, these four output detection layers are at a different scale. We
assume that the input image size is W × H × D, where W, H, and D
are the width, height, and the number of channels. The detection
output layers’ size of Det1–Det4 are (W /8) × (H /8) × c,
(W /16) × (H /16) × c, (W /32) × (H /32) × c, and
(W /64) × (H /64) × c, respectively. Here, the parameter c is a sum
of the number of classes and the number of bounding-box
coordinates.

3.1.1 Where to fuse two layers: The current problem is to fuse
RPN-V and RPN-T. The fusion can be applied at any point in the
two networks, and implementing fusion at different positions of
RPN would lead to different detection results. As we mentioned
above, features at different layers correspond to various levels of
semantic meanings and fine visual details. To fuse fine visual
details at a low level as well as fuse semantic features at a high
level, we insert four fusion layers at different detection output
layers. As shown in Fig. 2, for both of RPN-V and RPN-T, there
are a total of eight output layers Det1-T–Det4-T and Det1-V–Det4-
V. The four fusion layers are inserted after the detection output
layers. Then, the candidate proposals are generated from the four-
fused detection output layers. This MLF-RPN can build a stronger
and more accurate strategy to generate pedestrian candidates. The
multi-layer fusion provides a set of variable receptive field scales
that can cover an extensive range of pedestrian scales.
Simultaneously, the Conv4-V layer and Conv4-T layer are
integrated into a fused Conv4 layer. The generated multiple
convolutional feature maps are served for the detection stage.

3.1.2 How to fuse two layers: In Section 3.1.1, we introduced an
MLF-RPN to fuse two networks and to generate the pedestrian
candidates. In this section, we introduce a summation algorithm to
fuse two layers which can make the most of the multispectral data.
The goal is to integrate the two layers IV and IT from RPN-V and
RPN-T, respectively, to a fused layer IF. Here, IV, IT ∈ ℝH × W × D,
where W, H, and D are the width, height, and the number of
channels of the feature maps.

Previous CNN-based fusion methods [14–17] are directly along
the dimensions d of the channels to concatenate two layers at the
same position i, j , which can be defined as

IF = f concat IV, IT , (1)

Ii, j, 2d
F = Ii, j, d

V , (2)

Ii, j, 2d − 1
F = Ii, j, d

T , (3)

where 1 ≤ i ≤ H, 1 ≤ j ≤ W , 1 ≤ d ≤ D and IF ∈ ℝH × W × 2D.
This concatenation fusion leads to doubling the number of

feature maps. To reuse the filters’ weight in the pertained CNN
model, the concatenation layer is then used as input to an inner
product layer for dimension reduction. This additional
multiplication by a matrix incurs a greater computational cost.

In this paper, we proposed another simpler way of fusing two
layers. We use the summation of the two feature maps at the same
position i, j  and feature channels d

IF = f sum IV, IT , (4)

Ii, j, d
F = Ii, j, d

V + Ii, j, d
T , (5)

where 1 ≤ i ≤ H, 1 ≤ j ≤ W , 1 ≤ d ≤ D and IF ∈ ℝH × W × D

This summation fusion is a simple addition of the
corresponding numbers in two layers. In the learning stage, the best
correspondence can be automatically determined, which can
optimise the filters’ weight of each network to give us strong
features from fused layers. Another advantage is that summation
fusion does not increase the feature dimension, while the
concatenation fusion doubles the dimension. When inserting the
same number of fusion layers, summation fusion takes less training
time and less testing time.

In the experimental section (Section 4.2.1), we evaluate and
compare the performance of these two fusion methods in terms of
their detection miss rate and speed.

3.2 Detection network

The MLF-RPN introduced above generates pedestrian candidate
proposals as well as convolutional feature maps. In this section, we
introduce the detection stage for classifying the candidate
proposals based on the convolutional feature maps.

To compute features for a region proposal, we must first convert
the image data in that region into a form that is compatible with the
CNN since the input size of the pertained CNN has a natural scale
(e.g. 224 × 224). Previous methods solve this problem through
warping by upsampling the input patches’ size. However, there are
bad effects of input upsampling: large memory requirements
reduced training speed and reduced testing speed. It should be
noted that input upsampling does not enrich the visual details and
still misses small-sized pedestrians. Instead, it is necessary because
the higher convolutional layers respond very weakly to tiny
pedestrians. Mapping a 48 × 48 pedestrian into a 6 × 6 patch of the
Conv4 layer and a 3 × 3 patch of the Conv5 layer, for example.
This results in limited information for 7 × 7 ROI pooling. To solve
this problem, following [5], we use a deconvolution layer to
increase the resolution of feature maps. As shown in Fig. 2, we
deconvolve the three generated feature maps to get deconvolutional
feature maps of higher density and higher resolution. Feature
upsampling is better than the input image patches’ upsampling,
without incurring extra costs for computation and memory. The
additional deconvolution layer significantly improves detection
performance, particularly for tiny pedestrians.

Owing to the diversity of the real environment, the best features
are not necessarily in the fused Conv4-2x, but also in the
Conv4-2x-V or Conv4-2x-T. Since existing methods only extracted
features from a single-fused feature map, they are not robust. We
take features not only from one separate layer, but from all three
feature maps. After getting three deconvolutional feature maps, we
extract features using ROI pooling. The ROI pooling contains two
steps. First, since all proposals are in different scales, the proposals
from MLF-RPN are mapped into all three deconvolutional feature
maps. In the second step, the ROI pooling layer uses maximum
pooling to fix the dimension of features (e.g. 7 × 7 × 512). After
obtaining fixed features from all three feature maps, we integrated
them into one fused ROI layer through the summation fusion.
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Finally, the features are fed to a fully connected layer, as shown in
Fig. 2. Note that the ROI pooling is applied after the Conv4 layer
rather than after the Conv5 layer as in [30]. This is because Conv4
corresponds to higher resolution and is more suitable for location-
aware bounding-box regression. In the experimental section
(Section 4.2.2), we evaluate and compare the performance of
extracting features from these different layers at different
resolutions.

The MLF-RPN combined with this detection network is our
final MLF-CNN as shown in Fig. 2. In Section 4, we explicate our
systematic experiments and analysis of the results.

3.3 Implementation details

The filters of our proposed MLF-CNN are initialised with the
popular VGG-16 [31] model. Our MLF-CNN is trained end-to-end
by backpropagation and stochastic gradient descent since end-to-
end training can save a significant time cost [32, 30]. End-to-end
training is realised by defining two loss branches: one is for the
softmax classifier and the other is for linear bounding-box
repressors. Therefore, the overall loss is the sum of two loss
branches and optimised for multi-task. Our loss function is defined
as

L pi , bi = Lcls pi, pi
∗ + λpi

∗Lreg bi, bi
∗ , (6)

where pi is the probability distribution of an image patch i being a
pedestrian. The value of pi

∗ is ground truth label pi
∗ equals to 1 if

the image patch is positive, and equals to 0 if the image patch is
negative. The predicted bounding box bi = bi

x, bi
y, bi

w, bi
h

defining the four real-valued coordinates of the predicted bounding
box and bi

∗ is that of the ground truth box of a positive image patch.
The value of λ is the trade-off coefficient. The classification loss
Lcls is the log loss over pedestrian class and non-pedestrian class.
The regression loss is defined as

Lreg bi, bi
∗ = 1

4 ∑
j ∈ x, y, w, h

smoothL1 bj, bj
∗ , (7)

where smoothL1 is defined in [32]. The term pi
∗Lreg means that the

regression loss is activated only for pi
∗ = 1 and is disabled

otherwise.
To prevent this multi-task training instability in the early

iterations, a two-stage procedure is adopted [5]. In the first stage,
10,000 iterations are run with a learning rate of 0.00005. The
generated model from the first stage is used for initialising the
second stage's learning. The second stage's learning rate is 0.0002
and reduced by a factor of 10 after every 10,000 iterations. The
maximum number of iterations is 30,000. The parameters of layers
Conv1-T, Conv1-V, Conv2-V, and Conv2-T are fixed during
learning, to save training time. In addition, in order to eliminate
highly overlapped bounding boxes with lower scores, non-
maximum suppression is adopted after the proposal network. The
value of the intersection over union (IoU) is defined as

IoU b1, b2 = area b1 ∩ b2

area b1 ∪ b2
, (8)

where b1 and b2 are the two detection bounding boxes. In this paper,
we set the threshold to 0.7 because it is experimentally
demonstrated that this threshold can improve the detection
efficiency without affecting the performance. The generated
bounding boxes are ranked by their scores. If IoU > 0.7, it means
that b1 and b2 highly overlap. Then the detection bounding boxes
with the lower score will be eliminated.

4 Experiments
4.1 Datasets and processing platform

We evaluate our proposed fusion architecture on the KAIST
multispectral pedestrian dataset [18], the UTokyo multispectral
object detection dataset [19], and the OSU colour–thermal dataset
[20].

The KAIST dataset [18] consists of 11 videos, which contain
the aligned multispectral [red, green, and blue (RGB) visible and
thermal] images, and all images are normalised to the same size of
640 × 512. In particular, the dataset contains traffic sequences with
low visibility such as shadows, overexposure, dusk time, and

Fig. 2  Architecture of our proposed MLF-CNN
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nighttime. The first six videos are used for training, and the
remaining videos are used for testing. For training, we sample
images from training sets with 2-frame skips, which contains
50,172 images (25,086 visible images and 25,086 thermal images).
We evaluate on the standard 4504 images (2252 visible images and
2252 thermal images) with 20-frame skips in the test set, among
which 1455 images were captured during daytime and 797 others
for nighttime.

The UTokyo dataset [19] contains a total of 7512 group images
(3740 taken at daytime and 3772 taken at nighttime), which were
taken in a university environment at 1 fps using RGB, far infrared
(FIR), mid infrared (MIR), and near infrared (NIR) cameras. Five
classes (bike, car, car_stop, colour_cone, person) are labelled in
this dataset consisting of 6066 groups of unaligned training images
and 1466 groups of correctly aligned test images with a size of 320 
× 256. In our case, training and testing need to use aligned images.
Therefore, we only use the 1466 pair of RGB–FIR test sets for
evaluation and only consider the person detection task.

The OSU colour–thermal dataset [20] has a total of 17,088
images (8544 visible images and 8544 thermal images) of the same
size of 320 × 240. This dataset has a total of six sequences with
each three containing scenes of the same location. Following the
sampling procedure of Dollár et al. [33], we have uniformly
sampled the frames (every 10th frame) from each of the six video
sequences to include in our experiment. In total, we have 856 pairs
of colour–thermal test images coming from all the six sequences.

Our processing platform is a standard personal computer with
Ubuntu 14.04, with a single central processing unit (CPU) core
(3.40 GHz) of an Intel Core i7-4770 with 32 GB of random access
memory. An NVIDIA Titan X graphics PU was used for CNN
computations. The computation environment is MATLAB R2015b.

4.2 Self-comparison of MLF-CNN

4.2.1 Comparison of fusion methods in our MLF-CNN: In this
section, experimental results on different fusion methods applied to
MLF-CNN are reported. We compare different fusion methods in
Table 1, where we report the detection miss rate and computation
time on the KAIST reasonable test set. We first observe that when
using the same concatenation fusion method, the performance of
our MLF-CNN is significantly better than the other two state-of-
the-art methods faster R-CNN halfway fusion [14] and RPN fusion 
+ boosted forests (BF) [15]. This indicates that our proposed MLF-
CNN architecture is more effective at integrating visible and
thermal information since fusion at multiple layers can not only
integrate fine visual features in lower layers, but also semantic
features at higher layers. Second, we see that in the MLF-CNN
framework, concatenation performs considerably worst than
summation fusion. Furthermore, using concatenation fusion has a
much longer run time than using summation fusion. Therefore,
summation fusion is an effective fusion method in our MLF-CNN
framework. 

4.2.2 Comparison of feature extraction in our MLF-CNN: In
this section, we conduct experiments to validate the detection
performance when extracting features after different convolutional
layers. Our MLF-CNN is flexible and is able to take advantage of
features of high resolutions. Table 2 shows the results of extracting
ROI features after different layers in our method on the KAIST
reasonable test set. All entries are based on VGG-16 and the same
set of MLF-RPN proposals. 

Extracting ROI features after Conv4 achieves the best result of
25.65% miss rate. Extracting features after Conv5 degrades the
result: the miss rate is considerably increased to 29.65%. This is
because of the low-resolution features. Conv3 also shows
degradation (27.01%), which can be explained by the weaker
representation of the shallower layers. From this observation, we
can conclude that using the Conv4 layer achieves the best
performance in our MLF-CNN.

4.3 Detection evaluation on the KAIST dataset

In this section, the performance of the proposed method is
compared with three other methods: (i) the KAIST baseline
approach ACF + T + THOG [18], (ii) the faster R-CNN halfway
fusion approach proposed in [14], and (iii) the RPN fusion + BDT
approach proposed in [15]. We evaluate the detection performance
using the log-average miss rate against a false-positive per image
(FPPI) range of [10−2, 100] as suggested by Dollár et al. [33], and a
minimum IoU threshold of 0.5 is required for a detected box to
match with the ground truth box.

We first compared the detection results on a reasonable test
subset, in terms of reasonable all day, reasonable daytime, and
reasonable nighttime [18]. As shown in Fig. 3a, for reasonable all
day, the RPN fusion + BDT [15], and faster R-CNN halfway fusion
[14], have a respective miss rate of 29.83 and 37%, which is further
reduced to as low as 25.65% by our approach. A similar trend has
been observed for the other reasonable day and night subsets: for a
reasonable day, we have evidenced significant improvement (over
4%) over the state-of-the-art, our approach achieves 25.22% miss
rate where the top competing method does 29.58%. Meanwhile, for
reasonable nighttime, the gap between ours and that of RPN fusion 
+ BDT [15] is about 4% and the gap between ours and that of faster
R-CNN halfway fusion [14] is over 10%. Furthermore, our method
significantly outperforms the baseline of the ACF + T + THOG
[18] method, by reducing the miss rate by about 30%. In
conclusion, our method performs significantly better than all other
well-known methods for detecting pedestrian instances under
different illumination conditions. This demonstrates that our new
architecture has advantages in fusing not only the fine visual
features in lower layers to retain the visual details, but also the
semantic features at higher layers, and thus can make the most use
of multispectral data to detect pedestrians, even in bad illumination
conditions. 

We also examined detectors using three subsets of the dataset
which were defined based on the size of the bounding boxes. The
test sets were classified into near scale (more than 80 pixels),
medium scale (30–80 px) and far scale (20–30 px) [33]. These
subsets contain non-occluded pedestrians captured over the course
of a day. Fig. 4a displays the quantitative results of the near scale.
Our approach outperforms all comparison methods and achieves
the lowest log-average miss rate of 12.38%, which clearly exceeds
the performance of other existing methods. Furthermore, for
medium scale and far scale, our approach still achieves the lowest
miss rate, which amounts to substantially better performance than
the existing results, as exhibited in Figs. 4b and c. In conclusion,
our MLF-CNN generally outperforms other methods on the three
scales. This demonstrates that our method to fuse two networks at
multiple layers is more effective using multiple scales
convolutional features and can detect pedestrians of various sizes. 

In Table 3, we report a comparison between our method and
recent multispectral pedestrian detection methods in terms of the
miss rate and computational efficiency. The CPU times of all the
methods were measured using the same machine. Although ACF + 
T + THOG [18] has very fast detection speed (0.10 s/f), the miss
rate of ACF + T + THOG [18] is quite large. Therefore, MLF-CNN

Table 1 Comprehensive comparison of different fusion
methods with different fusion architectures on the KAIST
dataset
Fusion method Fusion architecture Miss

rate, %
Computation

time, s/f
summation MLF-CNN (ours) 25.65 0.15
concatenation MLF-CNN (ours) 26.77 0.20
concatenation faster R-CNN halfway

fusion [14]
37 0.19

concatenation RPN fusion + BDT [15] 29.83 —
 

Table 2 Comparison of feature extraction after different
layers in MLF-CNN on the KAIST dataset
Feature layer Miss rate, %
Conv3 27.01
Conv4 25.65
Conv5 29.32
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has a better trade-off between the detection speed and the detection
performance. For testing, our network takes only 0.15 s to process
one image, which is very competitive with previous methods. 

To provide a visual comparison, the detection results of related
works [14, 18] are illustrated and compared with our results on a
set of day and night images captured in challenge scenes. As
shown in Fig. 5, the first two rows show pedestrian detection in the
daytime. The last three rows are nighttime pedestrian detection. In
all sample images, the pedestrians are under poor illumination
conditions or at various scales. It is clear that ACF + T + THOG
[18] shows unsatisfactory results that produce many false-
positives, while faster R-CNN halfway fusion [14] is not effective
in detecting a small-scaled pedestrian. However, our proposed
method works well on pedestrians at various scales both during the
day and night. 

4.4 Detection evaluation on the UTokyo dataset

In this section, we compare MLF-CNN with two state-of-the-art
methods: ACF + T + THOG [18] and faster R-CNN halfway fusion
[14]. We evaluate the performance using the log-average miss rate
which is computed by averaging the miss rate at false-positive rates
spaced evenly between the [10−2, 100] FPPI range. The comparison
results are evaluated for pedestrian instances of the overall case
[33], which contains all scales and occlusions.

As displayed in Fig. 6, our MLF-CNN significantly
outperforms the other two state-of-the-art methods and achieves

the lowest miss rate of 27.63%. Fig. 7 presents example detection
results of our approach on UTokyo test images. It also provides
visual comparisons, where evidently the state-of-the-art methods
faster R-CNN halfway fusion [14] and ACF + T + THOG [18]
produce more false alarms as well as more misses. The UTokyo
dataset is challenging, but suitable for validating detection
performance since the number of nighttime cases dominates the
overall pedestrian population. This comparison on the UTokyo
dataset indicates that our MLF-CNN is more effective to fuse
visible and thermal information so that pedestrians can still be
detected even in poor illumination conditions. Moreover, our
method shows better generalisation ability than other methods. 

In Table 4, we make a comprehensive comparison between our
method and state-of-the-art methods. The CPU times of all the
methods were measured using the same machine. Although ACF + 
T + THOG [18] has a very fast detection speed (0.03 s/f), the miss
rate of ACF + T + THOG [18] is quite large. Therefore, MLF-CNN
has a better trade-off between detection speed and detection
performance. 

4.5 Detection evaluation on the OSU colour–thermal dataset

In this section, we evaluate the performance of the OSU colour–
thermal dataset. The comparison methods and results evaluation
settings are the same as the statement in Section 4.4.

Fig. 8 displays the quantitative results of the overall case. A
similar trend to what we have observed for the UTokyo dataset also
occurs here: the overall performance gap is quite large, 12.78% of
ours versus 32.79% of the faster R-CNN halfway fusion [14].
Fig. 8 shows that our method significantly outperforms other
methods. 

Fig. 9 displays several visual examples with side-by-side
comparisons. Faster R-CNN halfway fusion [14] and ACF + T + 
THOG [18] again produce considerably more false alarms and
missing instances than those of our approach. This result makes
sense because the OSU colour–thermal dataset involves the
presence of many small-sized pedestrians and a low resolution,
which demonstrate that our multi-layer fusion strategies can not

Fig. 3  Comparison of detection results (miss rate versus FPPI) on the KAIST dataset, in terms of all day, day time, and nighttime
(a) Reasonable all day, (b) Reasonable day, (c) Reasonable night

 

Fig. 4  Comparison of detection results (miss rate versus FPPI) on the KAIST dataset, in terms of near scale, medium scale, and far scale
(a) Near scale, (b) Medium scale, (c) Far scale

 
Table 3 Comparison of computation time and miss rate on
the KAIST dataset
Method Miss rate,

%
Computation time,

s/f
ACF + T + THOG [18] 54.27 0.10
faster R-CNN halfway fusion
[14]

37 0.19

MLF-CNN (ours) 25.65 0.15
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Fig. 5  Examples of detection results at day and night on the KAIST dataset. The yellow bounding boxes denote the ground truth. The green bounding boxes
show the detection results, illustrated in visible images
(a) Detection results of MLF-CNN (ours), (b) Detection results of faster R-CNN halfway fusion [14], (c) Detection results of ACF + T + THOG [18]

 

Fig. 6  Comparison of detection results on the UTokyo dataset
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only cover pedestrians of various scales, but also has better
robustness. 

Table 5 compares the detection speed of the proposed MLF-
CNN with those of other reported methods. We can see that MLF-
CNN achieves a better balance between speed and accuracy. 

5 Conclusions and future works
In this paper, we proposed a novel and efficient MLF-CNN for
multispectral pedestrian detection in adverse illumination scenes.
Our MLF-CNN contains two stages: a region proposal stage and a
detection stage. In the region proposal stage, we designed a multi-
layer fusion RPN to effectively fuse the visible and thermal
information and proposed to use summation fusion to integrate two
convolutional layers. This multi-layer fusion RPN makes the most
use of multispectral images and generates accurate pedestrian
candidates in various scales. In the detection stage, we extracted
features from three feature maps and combined all features through
the fused ROI pooling layer. Using the fused ROI pooling layer for
classification further improved the detector robustness under
diverse environments.

Experiments at different settings on our multispectral pedestrian
dataset have shown that our proposed MLF-CNN works well under
various illumination conditions to detect pedestrians at different
scales. It outperforms all previous methods, reducing detection
miss rate by 4.18% on reasonable all-day test sets when compared
with the previous state-of-the-art method. Moreover, our MLF-
CNN detector achieves competitive computation speed of about 7 

fps. We believe that our work will make a valuable contribution to
the area of pedestrian detection using a fusion approach.

In the future, we plan to develop a cascaded classifier trained by
using CNN features in the detection stage. The cascade structure
can reject many negative background samples early saving
computational cost. Furthermore, sample re-weighting in the
cascade structure can be helpful in reducing false negative cases.
Furthermore, we plan to develop an adaptive weighting mechanism
to better fuse the visible and thermal information under diverse
illumination conditions of the input multispectral images.
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Fig. 7  Examples of detection results on the UTokyo dataset. The yellow bounding boxes denote the ground truth, displayed in thermal images. The green
bounding boxes show the detection results, illustrated in visible images
(a) Input thermal images with ground truth, (b) Detection results of MLF-CNN (ours), (c) Detection results of faster R-CNN halfway fusion [14], (d) Detection results of ACF + T + 
THOG [18]

 
Table 4 Comparison of computation time and miss rate on
the UTokyo dataset
Method Miss rate,

%
Computation time,

s/f
ACF + T + THOG [18] 59.77 0.03
faster R-CNN halfway fusion
[14]

39.80 0.13

MLF-CNN (ours) 27.63 0.08
 

Fig. 8  Comparison of the detection results on the OSU colour–thermal
dataset
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Fig. 9  Examples of detection results on the OSU colour–thermal dataset. The yellow bounding boxes denote the ground truth, displayed in thermal images.
The green bounding boxes show the detection results, illustrated in visible images
(a) Input thermal images with ground truth, (b) Detection results of MLF-CNN (ours), (c) Detection results of faster R-CNN halfway fusion [14], (d) Detection results of ACF + T + 
THOG [18]

 
Table 5 Comparison of computation time and miss rate on
the OSU colour–thermal dataset
Method Miss rate,

%
Computation time,

s/f
ACF + T + THOG [18] 58.35 0.028
faster R-CNN halfway fusion
[14]

32.79 0.152

MLF-CNN (ours) 12.78 0.069
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